PALLADIUM-CATALYZED DESULFONYLATIVE COUPLING OF ARYLSULFONYL CHLORIDES WITH ACRYLATE ESTERS UNDER SOLID-LIQUID PHASE TRANSFER CONDITIONS

Masahiro Miura,^{*} Hideo Hashimoto, Kenji Itoh, and Masakatsu Nomura Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Summary: The reaction of arylsulfonyl chlorides with acrylate esters in the presence of a catalytic amount of $PdCl_2(PhCN)_2$ under solid-liquid phase transfer conditions gives the corresponding 3-aryl-2-propenoates in good yields.

The palladium-catalyzed coupling reaction of aryl bromides or iodides with alkenes is a useful method for preparation of styrene derivatives. 1 While aryl chlorides can be hardly reacted, aryldiazonium salts and the related compounds,² aroyl chlorides,³ aryl triflates,⁴ and arylazo aryl sulfones⁵ have been successfully used in place of aryl halides. We have reported that, in the presence of a catalytic amount of a palladium complex, arylsulfonyl chlorides react with carbon monoxide and titanium(IV) alkoxides accompanied by desulfonylation to give aromatic esters in reasonable yields. 6 It was expected that the palladium-catalyzed arylation of alkenes could be achieved by use of the sulfonyl chlorides, readily available from the corresponding sulfonic acids. The arylation using the sulfonyl chlorides in the presence of N-ethylmorpholine as base has been indeed disclosed in a recent publication by Kasahara et al.⁷ However, the product yields were unfortunately moderate to low. We now report our findings that the reaction of arylsulfonyl chlorides 1 with acrylate esters 2 in the presence of a catalytic amount of dichlorobis(benzonitrile)palladium PdCl₂(PhCN)₂ under solid-liquid phase transfer conditions⁸ efficiently proceeds to give the corresponding 3-aryl-2-propenoates 3 in good to excellent yields (Table).9,10

The following example is representative. A mixture of 1-naphthalenesulfonyl chloride (2 mmol), n-butyl acrylate (5 mmol), potassium carbonate (3 mmol), $PdCl_2(PhCN)_2$ (0.05 mmol), and benzyltrioctylammonium chloride $BzOct_3NCl$ (0.3 mmol) in m-xylene (4 cm³) was heated at 140 °C for 4 h with stirring under nitrogen. Formation of butyl 3-(1-naphthyl)-2-propenoate (95 %) was confirmed by GC-MS analysis. The ester was also isolated in 90 % yield by column chromatography on silica gel using benzene-hexane as eluant.

975

Ar in 1	R in 2	Base	PTC	Yield of 3 (%) ^{b,c}
1-naphthyl	n-Bu	K2CO3	BzOct3NC1	95
1-naphthyl	n-Bu	K2CO3	MeOct ₃ NCl	91
1-naphthyl	n-Bu	K2C03	Bu 4 NCĬ	36
1-naphthyl	n-Bu	K ₂ CO ₃	Et ₄ NC1	8
1-naphthy1d	n-Bu	K2CO3	BzOct ₃ NCl	75
1-naphthyl	n-Bu	Oct ₃ Ň	Ū	45
1-naphthyl	Et	K ₂ CO ₃	BzOct ₃ NCl	94
1-naphthyl	Et	BugN	•	38
2-naphthyl	n-Bu	K2ČO3	BzOct ₃ NCl	84
6-methyl-2-naphthyl	n-Bu	KZCOZ	BzOct ₃ NC1	89
phenyl	n-Bu	K2CO3	BzOct ₃ NCl	63
4-methylphenyl	n-Bu	K2C03	BzOct ₃ NCl	72
4-chlorophenyl	n-Bu	к2со3	BzOct ₃ NC1	90

Table. Palladium-catalyzed desulfonylative coupling of aryl sulfonyl chlorides with acrylate esters^a

^aThe reaction was carried out in m-xylene at 130-140 ^oC for 4 h under nitrogen. [1]:[2]:[Base]:[PTC]:[PdCl₂(PhCN)₂]=2:5:3:0.3:0.05. ^bYield based on 1 charged was determined by GLC analysis. ^cEach product had exclusively (E)-configuration. ^d[Pd(OAc)₂]=0.05.

While the present reaction was catalyzed by a number of palladium species, $Pd(OAc)_2$, $PdCl_2$, $PdCl_2(PhCN)_2$, $PdCl_2(PPh_3)_2$, $Pd(PPh_3)_4$, and Pd-black, among these species, $PdCl_2(PhCN)_2$ gave the most satisfactory result. The efficiency of the quarternary ammonium chlorides tested as the phase transfer catalysts (PTC) decreased as follows $BzOct_3NCl \ge MeOct_3NCl \implies Bu_4NCl \implies Et_4NCl$, indicating that the use of a PTC having high lipophilicity is essential for a high yield coupling.

References and Notes

- For example: J. Tsuji, "Organic Synthesis with Palladium Compound", Springer-Verlag, New York, 1980; R. F. Heck, "Palladium reagents in Organic Synthesis", Academic Press, New York, 1985.
- K. Kikukawa, K. Nagira, N. Terao, F. Wada, and T. Matsuda, Bull. Chem. Soc. Jpn., <u>52</u>, 2609 (1979); K. Kikukawa, K. Nagira, F. Wada, and T. Matsuda, Tetrahedron, <u>37</u>, 31 (1981); K. Kikukawa, K. Maemura, Y. Kiseki, F. Wada, and T. Matsuda, J. Org. Chem., <u>46</u>, 4885 (1981); K. Kikukawa, M. Naritomi, G.-X. He, F. Wada, and T. Matsuda, J. Org. Chem., <u>50</u>, 299 (1985).
- H.-U. Blaser and A. Spencer, J. Organomet. Chem., <u>233</u>, 267 (1982); A. Spencer, J. Organomet. Chem., <u>247</u>, 117 (1983).
- 4. Q.-Y. Chen and Z.-Y. Yang, Tetrahedron Lett., 27, 1171 (1986).
- 5. N. Kamigata, A. Satoh, T. Kondoh, and M. Kameyama, Bull. Chem. Soc. Jpn., 61, 3575 (1988).
- 6. M. Miura, K. Itoh, and M. Nomura, Chem. Lett., 1989, 77.
- 7. A. Kasahara, T. Izumi, N. Kudou, H. Azami, and S. Yamamoto., Chem. Ind., 1988, 51.
- T. Jeffery, J. Chem. Soc., Chem. Commun., <u>1984</u>, 1287; R. C. Larock and B. E. Baker, Tetrahedron Lett., <u>29</u>, 905 (1988).
- 9. Arylation of alkenes with sodium arenesulfinates using a stoichiometric amount of Na₂PdCl₄ has been reported; K. Garves, J. Org. Chem., <u>35</u>, 3273 (1970); R. Selke and W. Thiele, J. Prak. Chem., <u>313</u>, 875 (1971).
 10. Ruthenium-catalyzed desulfonylative coupling of vinylsulfonyl chlorides
- Ruthenium-catalyzed desulfonylative coupling of vinylsulfonyl chlorides with styrenes has been also reported; N. Kamigata, J. Ozaki, and M. Kobayashi, J. Org. Chem., <u>50</u>, 5045 (1985).

(Received in Japan 22 December 1988)